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INTRODUCTION
Opportunistic bacteria are relevant in the health care systems and in 
industries that involve living organisms. For instance, in 2021 the cost 
of human illness caused by food borne pathogens costed more than 
15.6 billion USD to USA.  A 48% of those outbreaks were related to 
meat, and 34% were related to plant based foods. This phenomenon 
contributes to the emergence of antibiotic-resistant bacteria which 
positively feed backs the increment of food borne antibiotic-resistant 
infections. Among the CDC and FDA, and USDA strategies to address 
these issues are: a) to stimulate the antibiotic drug discovery, b) to 
improve the appropriate antibiotic use in veterinary medicine and 
agriculture, and c) to ensure that the related industries have tools, 
information, and training on antibiotic use [1-5].

To properly manage the resistant bacteria era, humankind must advance 
its antimicrobial toolbox. One strategy is to enhance the activity of 
already commercialized antibiotics, and even to revert antibacterial 
resistant by co-formulating the antibiotic drugs with those enhancers. 
A successful example of this approach is the mixture of amoxicillin and 
clavulanic acid. This mixture was patented in 1985, consisting of a semi-
synthetic derivative of penicillin mixed with an inhibitor of the enzyme 
beta-lactamase isolated from Streptomyces clavuligerus. The market for 
amoxicillin is expected to raise up to 4,256 million USD by 2026, at the 
same time resistant strains are emerging and antibiotic drug discovery 
and  reformulation  is on demand (CDC) [3,6].

Acknowledging the success of amoxicillin-clavulanate potassium 
combo and the relevance of the resistant bacteria in health care systems 
and industry, and taking in account the promise of natural products 
as source of bioactive compounds, a systematic literature review was 
performed aiming to identify potential natural products that can 
improve the antibiotic activity against opportunistic bacteria, with 
potential applications in the food industry.

LITERATURE REVIEW
The literature search parameters were defined as following:

Databases and search engines  
National Center for Biotechnology Information (NCBI)–Pubmed 
Central [7] Scifinder [8]. In the cases in which the search engine also 
yielded recommended articles related to the found article, follow up of 
such studies was performed.

Publication date  
In the range from April 2016 up to 2020.

Targeted content 
Antimicrobial activity evaluation of Commercially Available Antibiotics 
together with Natural Extracts against opportunistic microbes (CAAs 
and NE–OM), such that yielded synergistic effects results which data 
analysis included either FICI or a statistical comparison between 
control and test groups. Also, analogue results from testing the main 
component(s) of any given natural extract were also included. 

Keywords and phrases  
The keywords applied to start the literature search in the different 
databases and search engines were: Synergistic effects natural products 
and antibiotics, botanicals and antibiotics bioassays, plant extracts 
interaction with antibiotics, and antibiotic adjuvant bioassays.
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ABSTRACT

Background: Opportunistic resistant bacteria are health and economically 
relevant in the health care systems and in industries worldwide, especially in the 
so-called Resistant Bacteria Era (RBE). Enhancing the activity of Commercially 
Available Antibiotics (CAAs) with different types of Natural Products (NPs) is a 
successful antimicrobial strategy, for instance the amoxicillin and clavulanate 
mixture.

Objective: To find research trends in this field during 2015 to 2020 and to detect 
potential drug hits with potential to diversify formulations and materials design that 
can be useful to manage the RBE.

Discussion: It yielded 190 reports of synergistic effects of CAAs and NPs. The 
analysed variables were: a) natural products origin: Plant family, genera, secondary 
metabolite type; b) strains: +/- Gram, genera, most frequent species, application 
field; and c) CAAs: Family, most frequent CAAs. The families with potential to have 
more bioactive species were Apocynaceae, Rubiaceae, Euphorbiaceae (Isbio 
factor). Lonicera had the highest reports amount. Polyphenols and flavonoids 
were the majority of pure NPs tested. Several potential drug hits for antibiotic 
activity enhancement at synergistic level were identified together with potential 
mechanisms of action: Berberine (Drug Efflux Inhibitor–DEI, Biofilm Inhibitor–BI), 
curcumin (BI), essential oils (BI),

3-o-metyl-butylgallato (inhibition of fatty acid saturation), among others. About 

the half of the tested strains were gram positive, being Methicillin Resistant 
Staphylococcus Aureus (MRSA) the most frequently tested. Escherichia coli 
was the gram negative strain most frequently reported, including enterotoxigenic 
and extended spectrum beta-lactamases producers. The growth of other 
foodborne genera strains, such as Listeria and Salmonella, were also inhibited. 
Aminoglycosides were the family most reported, with gentamicin as the most 
commonly studied.

Conclusion: NPs as either as plant extracts from a variety of families, or as 
purified compounds specially flavonoids and polyphenols, have shown effective 
results to enhance the antibiotic activity of CAAs against gram positive and 
negative strains relevant to HC and FI. Their mechanisms of action are starting to 
be determined, as the case EPIs and BIs. Further research is needed to achieve 
co-formulations and materials design useful for those fields that can certainly be 
positively impacted by pursuing this strategy.
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type are shown in Figure 5. Additionally, the natural products that 
yielded anti-biofilm inhibition activity were compiled in Figures 1,2. 
The chapter closes with remarks and future prospects for research, 
development and innovation utilizing natural products as enhancers of 
antibiotic activity of CAAs.

Exclusion criteria
Results classified as either antagonist, additive, or non–interaction 
effects of CADs and NPs tests; results classified as either enhancement 
or modulating effects of CADs and NPs tests, such that were reported 
without statistical analysis, such that it was not possible to conclude 
if synergistic effects were observed; only the NPs (either as extract or 
purified components from it) were tested for antimicrobial activity; 
mixture of two or more NPs, even if those yielded antimicrobial 
synergistic effects; mixture of two or more CADs, even if those yielded 
antimicrobial synergistic effects.

Data analysis 
The selected registries were analysed based on a set of parameters that 
are analysed in the following paragraphs. In brief, first, the analysis 
of the origin was divided into plant extracts and type of secondary 
metabolite. To further analyse the extracts origin, the frequency of 
reported families and genus were tabulated. In order to detect potential 
mining taxa for either more bioactive species (Isbio above 0.80 for a 
given family) or to define species that was the most studied (Isbio below 
0.3 for a given family), we proposed and utilized the Isbio index for 
further analysis (Figure 1).

Then, the tested bacteria were analysed by strain, gram positive or 
negative, and field of relevance. The antibiotics that rendered synergistic 
effects were grouped by their type. Additionally, the natural products 
that yielded anti-biofilm inhibition activity were compiled.

DISCUSSION
A succinct summary and the prisma escheme for the literature review in 
Figure 1. A total of 270 reports of Synergistic effects of Natural Products 
and Commercially Available Antibiotics (Syn-NPs-CAAs) were 
retrieved, together with several reviews on the topic [9-25]. The Syn-
NPs-CAAs were referred as a combinatory therapy, Chinese medicine 
and Western medicine integration, and an hybrid combination, all of 
them highlighting the fact of the utilization of an already validated 
commercially available antibiotic and a natural product that has not 
yet been validated by the same means, but that is known to be active 
in traditional medicine [15,26,27]. Such a natural product can range 
from a pure compound, to fractionated extracts of a given species, to a 
mixture of extracts from several species.

The Syn-NPs-CAAs approach may be useful in the food industry for 
design of new packaging or for switching bacteria control to this hybrid 
formulation [15]. The synergistic effects were observed in studies 
with slightly variants regarding study focus; these are commented 
accordingly in the text. The selected registries were analyzed based 
on a set of parameters that are analyzed in the following paragraphs. 
In brief, first, the analysis of the origin and type of natural product is 
presented also in Figures 2-4. Then, the tested bacteria were analyzed 
by gram positive or negative, strain, and field of relevance, and field. 
The antibiotics that rendered synergistic effects were grouped by their 

Figure 1: a) Definition of Isbio; b) Prisma scheme of the systematic literature 
review of antibiotic synergistic assays of NPs and CAAs. 

Figure 2: Examples of metabolites that yielded synergistic effects with CAAs 
and opportunistic bacteria.

Figure 3: Summary of results of 279 reports of antibiotic synergistic assays 
of NPs and CAAs.

Figure 4: Distribution of the plant genera and families in 439 retrieved reg-
istries of antibiotic synergistic assays of NPs and CAAs, including reports 
and patents. a) Distribution of the plant genera; b) Distribution of the plant 
families with more than six reports and their Isbio, index range of 0.80 and 
1 is highlighted; c) Secondary metabolite distribution of the 170 pure com-
pounds tested.

a)

b)

c)
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Origin and type of the natural products
The species studied covered from edible plants, those used in traditional 
medicine, up to weeds. The genera Lonicera (Capriofoliaceae) was 
reported more frequently, being almost the only genera explored in that 
family, notice the Isbio of 0.28 (Figure 4). Green tea Camelia sinensis 
(Theaceae) and Aloe vera (Xanthorrhoeaceae) are the most studied 
species of their respective families, and it seems as no other species are 
currently under the radar of synergistic effects research (Isbio below 
0.20).

According to an Isbio above 0.80, as shown in Figure 4, among the 
families of interest due to their potential to find bioactive species are 
Apocynaceae, Euphorbiaceae, Malvaceae and Rubiaceae [22]. The 
Compositae family is also of interest to explore more species, even 
though its current Isbio is 0.68. Compositae is one of the largest among 

the plant families, actually is the major group of flowering plants, with 
more than 27,000 known species [28].

A total of 290 assays of secondary metabolites yielded synergistic 
interactions with CAAs against opportunistic bacteria. Their distribution 
by secondary metabolite type is shown in Figure 2. Flavonoids and 
phenolics represented the majority of the tested purified extracts. 
The flavonoids and polyphenols families may play an important role 
increasing the antibiotic bioavailability, and might become relevant 
in hybrid formulations and materials design, example with CAAs 
[29-33]. Terpenoids as merulinic acid and a ursolic acid glycoside, 
among others, damaged the bacterial cell wall [34,35]. Berberine can 
be considered a drug lead for efflux pump inhibition, such as berberine, 
zeylenol and bulgecin A, and references therein. Currently, berberine 
main limitation is its low bioavailability in the body [36-42].

Other examples of efflux pump inhibitors are sophoroflavone G, 
jatrorrhizine, isovaleryl shikonin, griseviridin, 2-(2-aminophenyl) 
indole, flavonoids, essential oils and several plant extracts. It should 
be mentioned that both berberine and jatrorrhizine have also been 
isolated from Mahonia bealei, together with a variety of other alkaloids, 
terpenoids and polyphenols,  and synergistic  interactions  with CAAs 
can be an expected result [43-53].

Strains
The mixture of NPs and CAAs were effective against strains which 
distribution is presented in Figure 5. Opportunistic bacterial strains 
were the center of the Fractional Inhibitory Concentration Index—
FICI assays. FICI was determined applying the checkerboard method 
(except for at least five studies that compared statistical difference by 
p value). Among the bioactivities assayed were minimal inhibitory 
concentration, time kill assay, and biofilm inhibitory concentration. 
The origin of the strains included ATCC with a variety of resistant genes 
and other commercially available sources, as well as clinical isolates. 
First line antibiotics were commonly explored, with aminoglycosides 
being majority (Figure 5).

The most frequently reported genera were Staphylococcus, mostly S. 
aureus (SA) and MRSA. The other two main strains were the gram 
negative Escherichia coli (EC), including ESBL-producing EC and 
enterotoxigenic EC, and Pseudomonas aeruginosa (PA) including 
MDR variants. MRSA is in the WHO list of High Priority Bacteria that 
requires research and development of new antibiotics, and the CDC 
classifies MRSA as Serious Threat Level [54,55]. In 2014, MRSA was 
included among the US government National Targets for Combating 
Antibiotic Resistant Bacteria, aiming to reduce by half (to at least 50%) 
the bloodstream infections caused by MRSA [56]. Several of the studied 
strains belong to the so called ESKAPE pathogens species (Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumanii, Pseudomonas aeruginosa, Enterobacter), a set of antibiotic–
resistant pathogenic bacteria that represents new paradigms regarding 
pathogenesis, transmission, and resistance [57].

A set of 35 studies were focused in the type of infections more than it’s in 
the causal agent, for instance foodborne and oral infections, and those 
related to chronic inflammatory diseases, and veterinary, especially 
poultry and livestock [58-84]. The growth of foodborne strains Listeria 
species, Salmonella species, Vibrio species, Shigella species was inhibited 
by a variety of NPs-CAAs, including essential oils such as thymol and 
nerolidol [27,31,40,48,70,85-108].

Oral infections caused by opportunistic bacteria are an active target 
for drug discovery, including the virulent factors modulation such 
as the biofilm formation and a set of mouthwashes and toothpastes 
formulations had been patented [24,25,53,109-115]. Another target, 
at bioassay level, was the gut microbiota regulation through the intake 

Figure 5: Distribution of strains and commercially available antibiotics. 
a) Distribution of the 99 different strains reported grouped by field in 279 
reports of antibiotic synergistic assays of NPs and CAAs; b) Distribution of 
tested strains by their Gram dying; c) Distribution of tested strains grouped 
by genera; d) Distribution of the commercially available antibiotics utilized 
across those studies.
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Table  1:  Species of the plant extracts that yielded antibiofilm activity.

S.no Inhibition of biofilm 
formation by extracts from

Family Isbio

1 Ajuga bracteosa (silver 
nanoparticles)

Lamiaceae 1.7

2 Azadirachta indica Meliaceae 2.8
3 Cinnamomum tamala Lauraceae 2.1
4 Copaifera duckei Leguminosae 1.9
5 Copaifera pubiflora Leguminosae 1.9
6 Copaifera trapezifolia Leguminosae 1.9
7 Gymnema sylvestre Apocynaceae 1
8 Himatanthusdrasticus Apocynaceae 1
9 Leucas aspera Lamiaceae 1.7

10 Mikania glomerata Compositae 1.5
11 Pogostemon heyneanus Lamiaceae 1.7
12 Scutellaria baicalensis Lamiaceae 1.7
13 Vitex negundo Lamiaceae 1.7
14 Withania somnifera Solanaceae 1.4
15 Mangrove-derived 

endophytic fungus Eurotium 
chevalieri KUFA 0006

Fungi NA

Mixture of extracts
16 Carotae fructus, Arecae 

semen, Granati pericarpium, 
Omphalia lapidescens, 

Coptidis rhizoma, Cyrtomii 
rhizoma, Meliae cortex, 

Platycladi cacumen, 
Portulacae herba, 

Andrographitis herba, Radix 
aucklandiae

Several families NA

The presumptive drug target of MRSA biofilm is dehydroxysqualene 
synthase which produces staphyloxanthin, its main biofilm component 
[53,115,162-164]. Essential oils are also used to treat infections against 
gram negative bacteria relevant in veterinary in the Syn-NPs-CAAs 
format [5]. Limonene and other essential oils, as in Figure 6, may be 
obtained by green extraction methods, they evaporate with time, and they 
can be detected by electronic noses, which can facilitate quality control 
in the food industry. Other type of components could be also included 
in antimicrobial formulations or in the design of plastic polymers that 
allow for virulence factors modulation [15,89,121,148,165,166].

Increasing bioavailability and stimulation of the 
host’s immune system
Several studies using host-pathogen models reported that the 
enhancement of the antibiotic activity was related to the host’s 
metabolism, example: stimulation of the immune system or increasing 
bioavailability. Beyond whole one type cells assays, rodent animal models 
and mammalian cultured cells allows for detection of such interactions 
[29-33,94,122,167-170].Those findings highlights the importance 
of this type of experiments to detect the induction of favorable host-
pathogen interactions, at same time highlights the need to access and 
to develop high-through-put protocols that do not necessarily involves 
animals but that still can be a probe for those interactions.

Techniques, methods and approaches
Several approaches and techniques are being developed in order 
to find antibiotic enhancers. Efforts toward rationale design drug 
discovery are ongoing, such as natural products inspired fragment 
based approach [171] and SARS studies [172]. And non- targeted mass 
spectrometry analyses [173] and other metabolomics based methods 
(biochemometric) [42] are among several platforms for high-through-
put bioassays are being proposed [174-177]. If plant extracts are 
going to be used as the commercial formulation, their quality control 
is a key stone for its success. Dettweiler et al., proposed the Extract 

of selected probiotics [116]. Inhibition of the growth of gram negative 
bacteria represented the half of the reported strains, including MDR 
variants. Examples of natural products inhibiting EC, KP, and PA can 
be found in Figure 4. Edible properties are relevant, especially for safety 
concerns on utilizing plant extracts. An example of the 49 Syn-NPs-
CAAs for EC is the methanolic extracts of edible plants Psidium guajava 
L, Persea americana Mill, Camellia sinensis L, Mangifera indica L, Coula 
edulis Baill, and Citrus sinensis L. [93]. Other plant extracts inhibited 
EC growth with focus on foodborne, hospital acquired infections and 
veterinary [27,29,30,48,78,80-82,86,89,92,93, 95,99,100,117-147].

Inhibition of toxin production and antibiofilm 
activities
Among the reported mechanisms of action that renders synergistic 
effects of NPs and CAAs are the interaction of NPs with bacteria 
virulent factors. Which included inhibition of toxin production, biofilm 
formation, interference with quorum sensing molecules, inhibition of 
penicillin binding proteins, pump efflux inhibitors and pore forming 
compounds [34,35,49,50,148-152].

Essential oils and flavonoids are among the set of drug hits for inhibiting 
enterotoxin production invitro. Certain polyphenols inhibited the 
production of enterotoxins by S. aureus MDR [103]. And 5-Hydroxy-
3,7,4-trimethoxyflavone inhibited the enterotoxin production by E. coli 
[120,141]. The extract of Spondias mombin L (Anacardiaceae) leaves 
also enhanced the amoxicillin effect against enterotoxin EC strains, 
and further research may also lead other drug hits for this activity 
[141]. Further research on these natural products may lead to improve 
therapies to treat haemorrhagic diarrhoea infections that are of high 
relevance in lower income countries [2].

Biofilm has been identified as a critical point for foodborne bacteria, as 
they are related to harbour variants that are resistant to antibiotics and 
cleaning products [4]. Antibiofilm activity was specifically reported, and 
usually detected with ethidium bromide assay or electron microscopy 
[50,153]. The plant extracts that inhibited biofilm formation are listed 
in Table 1. For instance, the essential oils from the weed Mikania 
cordifolia, especially limonene, enhanced the CAAs activity against 
foodborne bacteria, probably via biofilm formation inhibition [89]. 
Specific polyphenols, alkaloids and terpenoids have also inhibited 
biofilm formation (Figure 6). They can be envisioned as drug hits  for  
antibiofilm  activity [36,154-161].

Figure 6: Antibiofilm agents. a) Polyphenols, alkaloids and terpenoids, as 
pure compounds, that yielded antibiofilm activity; b) Essential oils and an 
EO’s derivative that yielded antibiofilm activity.
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Fractional Inhibitory Index—EFICI as quality control method of the 
extract, testing the actual bioactivity of the extract instead of its main 
components [178].

Raw materials
Examples of research lines related to circular economy are the 
synergistic effects of CADS with olive leaf phenols [127], essential oil 
of melon peel [99], anthocyanin’s from wine by-products [179], and 
with metabolites from tobacco waste [180], fruit waste material [99]. 
Nutrient additives for animals food and soil fertilizers based on plant 
extracts are attracting interest, they not necessarily contain CADs, but 
their application eventually leads to reducing the amount of CADs 
utilized. In the case of animal feed additives. They stimulate the immune 
system thus potentially reducing the impact of infections and amount 
of CADs applied. For the case of fertilizers, they not only enrich the 
soil’s nutrient composition but they can improve the soil’s microbiota 
for further crop planting [94,106,181-185].

Another approach is the derivatization of natural products by linking 
them with other privileged scaffolds to improve their potency and 
ADME properties. For in- stance, azole derivatives carvacrol and 
naphtoquinones have been effective invitro against gram positive and 
negative strains [146] and curcumin derivatives have been prepared 
aiming to improve their bioavailability [186].

CONCLUSION
Future work would involve to study more natural products and to 
develop materials that contain antibiotic enhancers. For example: 
a) to investigate more species and to characterize their extracts; b) 
to expand the purified natural products by either testing more NPs 
or derivatizing those already identified as drug hits, example: for 
absorption improvement; c) to systematically explore of plant genus 
or families; d) to develop more test to explore inhibition of virulent 
factors; e) to prepare polymers and films with bioactive natural products 
for in-field test of their affectivity; f) to define formulations to inhibit 
bacterial growth, that include antibiotic enhancers such as flavonoids, 
polyphenols or essential oils.

The mixtures of natural products and commercially available antibiotics 
already shown synergistic effects against opportunistic bacteria 
relevant in health care, food and plant industries, and several patented 
formulations related to toothpastes and beauty products are starting 
to emerge. Those trends grant further research, development and 
innovation in the food industry and health care systems. Further activity 
in this area can led to the surge of non-traditional circular economies 
around certain species and even to consolidate as an additional tool to 
manage the resistant bacteria era.
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