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INTRODUCTION
In recent years, it has been possible to identify many of the 
pathophysiological mechanisms operating in the onset and progression 
of chronic-degenerative diseases. In the same way, we have observed 
an important paradigm shift because the conception of the pathology 
of the single organ has been abandoned in favor of a broader vision of 
the morbid process. In addition, it has been possible to observe that 
very often the same risk factors are shared by different diseases and 
are interdependent with each other, leading to the introduction, over 
the years, of the term “global cardiometabolic risk”. Interestingly, this 
definition includes a comprehensive list of classic and emerging factors 
associated with both cardiovascular and metabolic diseases.

Thus, we examined articles and reviews published in the last 20 
years, searched through PubMed using the following search terms or 
(combination of terms): “heart failure,” “endothelium or endothelial 
dysfunction,” “oxidative stress,” “inflammation,” “atherosclerosis,” 
“NLRP3 inflammasome,” “Interleukin-1” and “treatment.” Only 
English-language papers were included in the literature search. 
Additional papers found in the reference list of the retrieved articles 
were also considered.

LITERATURE REVIEW
Heart failure
Heart Failure (HF), a multifactorial clinical syndrome with increasing 
incidence and prevalence worldwide, is one of the most common 
causes of frequent hospitalization and high rate of mortality, remaining 
a challenge to be overcome to increase patients’ life expectancy and 
reduce healthcare costs [1]. HF is characterized by a progressive 
impairment of both myocardial structure and its function with an 
associated neurohormonal activation that consents to define a specific 
proinflammatory phenotype; in addition, this neurohormonal activation 
represents one of the most important pathophysiological mechanisms 
underlying the progression of cardiac impairment [2,3]. In fact, the 
massive neurohormonal activation–resulting in an increased secretion 
of angiotensin II, aldosterone, norepinephrine and epinephrine-by 
increasing the afterload, reduces cardiac output and activates a vicious 
circle responsible of the progression to end-stage disease.

Unfortunately, HF incidence is expected to raise further due to the 
progressive increase in cardio metabolic risk factors such as obesity and 

type-2 diabetes mellitus which, compared to the past, are the main risk 
factors for HF [4-6]. In fact, in the 1970s and 1980s, the most frequent 
causes of HF were high blood pressure and cardiac valvular diseases 
[7]. The increased efficacy of antihypertensive drugs, together with the 
growing prevalence of obesity and type-2 diabetes mellitus, contributed 
to make ischemic heart disease, both acute and chronic, the prevalent 
cause of HF. Obviously, the ischemic etiology of HF is characterized by 
a quantitative and/or functional decrease in myocardial tissue that is 
associated with a progressive decrease in cardiac output.

Current guidelines, on the basis of echocardiographic ejection fraction 
(EF) value, have defined three main forms of HF including.

•	 HF with reduced EF (HF-rEF; EF <40%), 

•	 HF with preserved EF (HF-pEF; EF>50%), and 

•	 An intermediate form with an EF ranging from 41% to 49% [8]. 

Typical risk factors associated with HF-pEF are female gender, essential 
hypertension and obesity, while ischemic etiology is more associated 
with HF-rEF [9]. However, increasing evidence support that obesity, 
with the associated hemodynamic and inflammatory alterations, may 
also contribute to the development of HF-rEF in some patients [10].

Typical signs and symptoms of HF are the expression of the progressive 
malfunction of the ventricular myocardium and the compensatory 
mechanisms that are activated as a result of this. On the other 
hand, it is important to remember that over the years the etiology 
of decompensation has profoundly changed. Obviously, all that 
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ABSTRACT

Heart failure is one of the leading causes of morbidity and mortality worldwide. 
Endothelial dysfunction, considered as the primum movens of the atherosclerotic 
process, is both a marker and maker of heart failure. In this complex clinical 
scenario, in the last decades inflammation played a pivotal role as the common 
pathogenetic factor for the appearance and progression of cardio metabolic 
diseases.

The aim of this narrative review is to examine original articles and reviews 
published over the past 20 years, focused on the link between inflammation 
and heart failure, with a particular focus on endothelial dysfunction. The articles 
and reviews have been searched through PubMed using the following search 
terms (or combination of terms): “Heart failure,” “endothelium or endothelial 
dysfunction,” “oxidative stress,” “inflammation,” “atherosclerosis,” “NLRP3 
inflammasome,” “Interleukin-1” and “treatment.” Only English-language papers 
were included in the literature search. Additional papers found in the reference 
list of the retrieved articles were also considered.
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affects both the rapidity of the progression of HF and the sequence 
of the compensatory mechanisms activated, with clinical important 
implications from both a therapeutic and preventive point of view. In 
fact, an early detection and a just as fast correction of these mechanisms 
could delay the clinical manifestations of HF and the progression to 
end-stage disease and death. These aspects, which are very important 
from a prognostic point of view, are very often ignored despite the fact 
that they can have a heavy impact on mortality [11]. According with 
this, HF should never be the final diagnosis of a pathogenetic process 
that is very often ignored in clinical practice. Therefore, in the definition 
and classification of HF, the identification of the pathogenetic cause 
should never be avoided, because it can have important implications 
both on the prognosis and on its overall treatment and prevention.

To better understand the complexity of HF, it is important to remember 
that it is associated with several cardiovascular and non-cardiovascular 
comorbidities that contribute to make the prognosis more severe and 
increase the risk of mortality. In addition, some patients with HF-rEF 
also have older age, higher prevalence of sarcopenia and cognitive 
impairment and diminished physical and physiological reserve, 
all factors that make these patients frailer and at a greater risk of 
hospitalization and death [12].

Vascular endothelium
The preservation of the anatomical and functional integrity of the 
endothelium is essential for the physiological activity of the vascular wall. 
The normal endothelium consists of a monolayer of flat and polygonal 
cells capable of modulating vascular tone and vascular smooth muscle 
cells and fibroblasts proliferation, inhibition of monocyte and leukocyte 
adhesion of platelet aggregation and of the migration and proliferation 
of vascular smooth muscle cells that are all factors participating to the 
appearance and progression of atherosclerotic disease [13-18]. The main 
mediator of all these protective biological actions is the Nitric Oxide 
(NO), a short-lived molecule, produced from the amino acid L-arginine 
by the endothelial enzyme NO synthase (e-NOS) [19]. In addition to 
NO, the endothelium produces and releases other vasoactive substances 
both vasodilating, such as endothelium-dependent hyperpolarization 
factor and prostacyclin, and vasoconstrictions as well as endothelin-1, 
thromboxane A2, angiotensin-II, etc [20]. Due to its characteristics, the 
endothelium can be considered an autocrine and paracrine organ as it is 
capable of secreting, in response to a wide variety of signals, numerous 
chemical mediators that modify the behavior of both the cells that 
produced them and those nearby [21,22]. The result is a modulation 
of vessel tone and blood flow in response to nervous, humoral and 
mechanical stimuli. Blood flow is strictly associated with laminar shear 
stress, the most important physical stimulator of e-NOS [23-25], while 
an oscillatory disturbed shear stress promotes the increase in the levels 
of transcription factors such as Nuclear Factor-kB (NF-kB), that is 
implicated in pro-inflammatory status due to increased production and 
reduced scavenging of Reactive Oxygen Species (ROS) or the reduction 
of other antioxidant pathway such as the Nuclear Related Factor 2 
(Nrf2) [26,27]. Therefore, it is not surprising that blood flow, and the 
associated shear stress, play an important role in the modulation of the 
endothelium redox state and the inflammatory pathways involved in 
the atherosclerotic process [24].

Over the time, it has been proved that major and emerging cardiovascular 
risk factors exert a negative impact on endothelial function by 
decreasing NO bioavailability [28-41]. This circumstance occurs early in 
vascular damage and may be produced by different mechanisms as well 
as reduced NO synthesis, increased NO degradation due to oxidative 
stress, or to diminished sensitivity to NO [14,15,41,42]. Concerning the 
first mechanism, it was well demonstrated that different endogenous 
analogues of L-arginine, such as Asymmetric Di-Methyl Arginine 
(ADMA), may interfere with e-NOS activity and consequent NO 

production affecting normal vascular motricity. Interestingly, ADMA 
has been demonstrated to be augmented in patients with chronic renal 
diseases, with hypercholesterolemia and in other clinical conditions 
such as essential hypertension or type-2 diabetes mellitus [43-51].

In addition, it is important to remember that hemodynamic factors may 
also be associated with reduced bioavailability of NO; these include the 
shear stress, the major endogenous physical stimulus of e-NOS activity, 
the perturbation of which may be considered the most important 
mechanism responsible for the reduced endothelium-dependent 
vasodilation in essential hypertension. According with this, shear stress 
is influenced by vascular wall stiffness or blood viscosity [52,53]. Thus, a 
dysfunctional endothelium exerts an important pathophysiological role 
in the development and progression of atherosclerosis disease due to its 
reduced ability to protect the vascular system. Of interest, some studies 
have demonstrated that endothelial dysfunction evaluated in both 
coronary and forearm vasculature provides prognostic information for 
future clinical events [54-57].

Inflammation
It is well established that some cardiovascular diseases recognize a 
common pathogenetic mechanism attributable to a pro-inflammatory 
state due to an increased production of ROS that include both oxygen 
free radicals (superoxide, hydroxyl and peroxyl radicals) and non-
radicals (hydrogen peroxide, hypochlorous acid and ozone) [58-63].

Although basal ROS production is critical for the maintenance of 
many vital functions, such as defense against pathogenic germs and 
gene expression, the dysregulation of oxidant signaling is also involved 
in some pathological events that participate to the appearance and 
progression of some chronic and degenerative diseases [64-66]. In this 
process of fine balance between the production of pro-oxidant and 
antioxidant substances, a key role is played by mitochondria which, 
together with other systems involved including the endoplasmic 
reticulum, contribute to intracellular ROS production [58,63,64]. Thus, 
it is plausible to affirm that the inflammation is an adaptive reaction 
to aggression from both exogenous and endogenous agents and that 
a low-grade inflammation is to be considered useful and desirable for 
cellular homeostasis.

Over the years, the concept of inflammasome an intracellular 
multiprotein complex has been developed and its pathogenetic role 
in inflammatory processes that are aimed at protecting the host from 
external microbial agents or endogenous agents through the production 
and release of inflammatory cytokines has been well defined [67]. 
Among the different types of inflammasomes, the nucleotide-binding 
oligomerization domain, Leucine-Rich Repeat Containing Proteins 
3 (NLRP3) is more versatile than the others and is capable of being 
activated by Damage-Associated Molecular Patterns (DAMPs) that 
are released by senescent or damaged host cells [67-70]. Interestingly, 
the canonical pathway of NLRP3 inflammasome activation occurs 
through the stimulation, by exogenous or endogenous signals, of 
membrane receptors-called Pattern Recognition Receptors (PRRs)-
which also include Toll-Like Receptors (TLRs), specifically TLR4, 
which induces an up-regulation of both NLRP3 and pro-interleukin 
(IL)-1b via NF-kB pathway [67,71,72]. Therefore, due to its structural 
characteristics and interaction with other intracellular pathways, the 
NLRP3 inflammasome may be considered an important and useful 
cytosolic PRR that, with the subsequent cytokine cascade release and 
pyroptosis, is efficient to protect the host from external pathogens and 
clear the body of damaged cells. However, a dysregulated activation of 
NLRP3 inflammasome by many danger signals such as unsaturated 
fatty acids, high glucose or cholesterol, b-amyloid aggregates, urate 
crystal and ceramide induces chronic inflammation participating to 
the appearance of some chronic and degenerative diseases, including 
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development.

Furthermore, augmented arterial stiffness is another important 
pathogenetic mechanism relating endothelial dysfunction to the HF 
appearance, particularly HF-pEF. In fact, it is well recognized that 
the aortic stiffening produces the augmentation of left ventricular 
systolic workload, due to central systolic blood pressure increase. 
These hemodynamic alterations reverberate negatively both in the left 
ventricle, by promoting cardiac hypertrophy and consequent diastolic 
dysfunction, and in the coronary circulation decreasing coronary 
perfusion pressure [95,96]. Similar data were also observed by us, 
demonstrating that endothelial dysfunction in hypertensive patients 
is inversely related to pulse pressure, a surrogate marker of vascular 
aging and arterial stiffness [52]. Moreover, endothelial dysfunction 
is associated with other proliferative mechanisms involved in cardiac 
hypertrophy such as the modification of both matrix metalloproteinases 
affecting cell migration and the redox-sensitive pathway either in 
response to chronic pressure overload or neurohumoral stimuli as 
proved by experimental findings [97-99]. Specifically, pro-oxidant 
mediators contribute to cardiac hypertrophy by activating certain 
mitogenic protein kinases and the transcription factor NF-kB. The 
proliferative role of these pro-oxidant factors is confirmed by some 
in vivo evidence demonstrating the antioxidant effect in reducing the 
development of experimental cardiac hypertrophy due to blood pressure 
overload in mice or guinea pigs [97,100]. In addition, oxidative stress 
may increase cardiac interstitial fibrosis that represents an important 
harmful aspect of both left ventricular hypertrophy and following HF 
progression [97,101]. According with this, we previously reported, in 
hypertensive patients, that endothelial dysfunction parallels the increase 
of cardiac mass as well as that the preserved endothelial function 
predicts regression of cardiac mass, independently of traditional 
cardiovascular risk factors and antihypertensive therapy [82,102]. These 
two conditions acquire an important prognostic significance since the 
co-existence of both endothelial dysfunction and cardiac hypertrophy 
significantly increases the risk of subsequent cardiovascular outcomes, 
confirming the importance of better stratifying the cardiovascular risk 
of the hypertensive patients [103].

CONCLUSION
In conclusion, it is plausible to affirm that endothelial dysfunction and 
its associated inflammation, operate in the development of incident 
HF, thus allowing hypothesizing its causative role in the cardiovascular 
continuum. In addition, given the association of endothelial dysfunction 
with diabetes mellitus and/or coronary artery disease, it is plausible that 
these two clinical conditions, that are well recognized determinant of 
both structural and functional cardiac alterations, also contribute to 
the progression from endothelial dysfunction to HF. These data support 
what is already known about the progression from hypertension to HF, 
retaining diabetic cardiomyopathy and ischemic cardiac dysfunction 
as intermediate steps in this continuum. Obviously, since endothelial 
dysfunction is also associated, in a bidirectional manner, with diabetes 
and ischemic heart disease it is possible to affirm that a dysfunctional 
endothelium concurs to HF development with multiple pathogenetic 
mechanisms.
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