Bioefficacy of methanolic root extract of *Piper longum* L. against isolated strains of Keratinophilic fungi

Kodagikere Palakshappa Prassanna¹, Raja Naika¹ and Pasura Subbaiah Sujan Ganapathy*² ³

¹Department of P.G. Studies and Research in Applied Botany, Kuvempu University, Shankaraghatta, 577451, Karnataka, India.
²Department of P.G. Studies and Research in Biotechnology & Bioinformatics, Kuvempu University, Shankaraghatta 577451, Karnataka, India.
³Centre for Vrikshayurveda, A Division of Centre for Advanced Studies in Biosciences, Jain University, Channapat- 560019, Karnataka, India.

ABSTRACT
A total of 9 species belonging to 3 genera of keratinophilic fungi were recovered from twelve soil samples collected from different sites in shivamogga using the hair-baiting technique. Most of the fungal species isolated are known to be agents of human and animal infection. The methanolic root extract of *Piper longum* was evaluated for antifungal activity against the isolated strains to determine the active. It was observed that the extract was effective in inhibiting species with zone of inhibition ranging between 3 mm and 11 mm but the extract showed no zone of inhibition for *Chrysosporium keratinophilum*. The results indicate that the methanolic root extract of *Piper longum* might be exploited as natural drug for the treatment of several infection caused by these organisms.

INTRODUCTION
Keratinophilic mycoflora grow and reproduce on keratin materials such as skin, hair, nail, fur, feather, horn, hoof, beak etc., they utilize keratin as carbon source [1]. Keratinophilic fungi are important ecologically and present in the environment with variable distribution patterns and cause human and animal mycoses [2] Most cutaneous infections are the work of homogeneous group of keratinophilic fungi known as dermatophytes [3]. The dermatophytes have the capacity to invade keratinized tissue of the body including skin, hair and nails [4].

Piper longum L. is an aromatic climber with stout roots, jointed stems, and ovate leaves belongs to the family Piperaceae, which is very sparsely distributed in India. The plant is popularly known as Pippali. The root have been used as stomachic, thermogenic, aphrodisiac, carminative, expectorant, laxative, digestive, emollient, and animal mycoses [2] Most cutaneous infections are the work of homogeneous group of keratinophilic fungi known as dermatophytes [3]. The dermatophytes have the capacity to invade keratinized tissue of the body including skin, hair and nails [4].

The main objective was to report the prevalence of keratinophilic fungi in this region and to investigate the effect of methanolic root extract of *Piper longum* on these keratinophilic fungi.

MATERIALS AND METHODS

Plant Material:
The dried roots of *Piper longum* were collected from Somavarpet region of Coorg district, India. The plant material was authenticated by Dr. Raja Naika, Department of Applied Botany, Kuvempu University, Shankaraghatta (Voucher specimen number PLAB.214).

Extraction:
Dried roots of *Piper longum* were powdered using a mechanical grinder. 100 g of dried root powder was soaked in 1000 ml of methanol (LR grade, Merck, India) and kept on a rotary shaker for 24 h. The extract was filtered under vacuum through a Whatman No. 1 filter paper and the process repeated until all soluble compounds has been extracted. Extraction was considered to be complete when the filtrate had a faint colour. The extracts were evaporated to dryness under reduced pressure using a Rotavapor (Buchi Flawil, Switzerland). A portion of the filtrate had a faint colour. The extracts were evaporated to dryness under reduced pressure using a Rotavapor (Buchi Flawil, Switzerland). A portion of the filtrate had a faint colour. The extracts were evaporated to dryness under reduced pressure using a Rotavapor (Buchi Flawil, Switzerland). A portion of the filtrate had a faint colour. The extracts were evaporated to dryness under reduced pressure using a Rotavapor (Buchi Flawil, Switzerland). A portion of the filtrate had a faint colour. The extracts were evaporated to dryness under reduced pressure using a Rotavapor (Buchi Flawil, Switzerland). A portion of the filtrate had a faint colour.

Antifungal assay:
Antifungal activity of methanolic root extract of *Piper longum* was tested using agar well diffusion method. The extract was dissolved in 10% aqueous dimethylsulfoxide (DMSO) to a final concentration of 250, 500, 1000 μg/100μl. Pure DMSO was taken as the negative control.

KEY WORDS: Keratinophilic fungi, soil, *Piper longum*, antifungal.
200 μl of inoculum was aseptically introduced on to the surface of sterile agar plates and sterilized cotton swabs were used for even distribution of the inoculum. A well of about 6.0 mm diameter with sterile cork borer was aseptically punched on each agar plate. 100 μl of test and control compound was introduced in the well. The same procedure was used for all the strains. Plates were kept in laminar flow for 30 minutes for pre-diffusion of extract to occur and then incubated at 37ºC for 24 hours. Resulting zone of inhibition was measured using a scale.

RESULTS AND DISCUSSION

During this study, nine species of keratinophilic fungi belonging to three genera were isolated from twelve soil samples. The most dominant species (4 species) belong to the genus *Chrysosporium*, followed by *Trichophyton* (3 species) and *Microsporum* (2 species) (Table 1). The distribution of these keratinophilic fungi among the different sites was not uniform, and this could be attributed to the difference in the organic matter content of the soil. It has been reported that the organic matter content of the soil is one of the major factors affecting the presence and distribution of the keratinophilic fungi in soils [14].

Among *Chrysosporium* species, *Chrysosporium keratinophilum* was isolated frequently from all places in Shivamogga city. The occurrence of *Chrysosporium keratinophilum* is considered noteworthy because of its tolerance to a wide range of temperatures [10, 15-20]. Among the other identified species, *Microsporum gypseum* and *Trichophyton mentagrophytes* are recognized to cause skin, hair and nail diseases in man and animals, and have worldwide distribution [21-23]. These fungi have survived several generations of therapeutic regimens; there is certainly no guarantee that they would not become resistant to the latest antifungals. Since multidrug resistance of microorganisms is a major medical concern, screening of natural products in a search for new antimicrobial agents that would be active against these microorganisms is the need of the hour [24].

In the present investigation, the antifungal activity of methanolic root extract of *Piper longum* was evaluated against 9 species of keratinophilic fungi. Data presented in Table 2 revealed that methanolic root extract of *P. longum* was effective in inhibiting eight species with zone of inhibition ranging between 0 mm and 11 mm but the extract showed no zone of inhibition for *Chrysosporium keratinophilum*. These observations may be attributed to two reasons; firstly, due to the nature of biologically active components (alkaloids, flavonoids, sterols, quinine, tannins etc.) which might be enhanced in the presence of methanol [25]. It has been documented that alkaloids, flavonoids and tannins are plants metabolites well known for their antimicrobial activity [26]. Secondly, the stronger extraction capacity of methanol could have produced a greater number of active constituents responsible for antimicrobial activity.

CONCLUSION

The present study reveals that the public places of Shivamogga are rich in Keratinophilic fungi. The antifungal potential of methanolic root extract of *Piper longum*

Table 1: Distribution of keratinophilic fungi in soils of public places

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Isolated species</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Chrysosporium anum</td>
</tr>
<tr>
<td>02</td>
<td>Chrysosporium keratinophilum</td>
</tr>
<tr>
<td>03</td>
<td>Chrysosporium lobatum</td>
</tr>
<tr>
<td>04</td>
<td>Chrysosporium tropicum</td>
</tr>
<tr>
<td>05</td>
<td>Microsporum gypseum</td>
</tr>
<tr>
<td>06</td>
<td>Microsporum nanum</td>
</tr>
<tr>
<td>07</td>
<td>Trichophyton ajelloi</td>
</tr>
<tr>
<td>08</td>
<td>Trichophyton mentagrophytes</td>
</tr>
<tr>
<td>09</td>
<td>Trichophyton terrestre</td>
</tr>
</tbody>
</table>

Table 2: Antifungal activity of *Piper longum* methanolic root extract against test organisms.

<table>
<thead>
<tr>
<th>Strains tested</th>
<th>Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250 μg</td>
</tr>
<tr>
<td>Chrysosporium anum</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Chrysosporium keratinophilum</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Chrysosporium lobatum</td>
<td>4.33±0.07</td>
</tr>
<tr>
<td>Chrysosporium tropicum</td>
<td>5.73±0.27</td>
</tr>
<tr>
<td>Microsporum gypseum</td>
<td>4.33±0.33</td>
</tr>
<tr>
<td>Microsporum nanum</td>
<td>5.67±0.33</td>
</tr>
<tr>
<td>Trichophyton ajelloi</td>
<td>5.40±0.31</td>
</tr>
<tr>
<td>Trichophyton mentagrophytes</td>
<td>5.00±0.12</td>
</tr>
<tr>
<td>Trichophyton terrestre</td>
<td>4.20±0.12</td>
</tr>
</tbody>
</table>

The values are the mean of three experiments ± S.E.
against Keratinophilic species for which the problem of multidrug resistance may emerge thereby making them difficult to treat. Further in vitro and in vivo studies are required in order to prove the bioefficacy of the extract. The encouraging results indicate that this extract might be exploited as natural drug for the treatment of several diseases caused by these organisms and could be useful in understanding the relations between traditional cures and current medications.

REFERENCES